1 (a) A Fibonacci-type sequence starts 3 -8

The sequence is continued by adding the previous two terms.

Work out the next two terms.

[2 marks]

The 5th term of a linear sequence is 17

The 6th term of the sequence is 21

Work out the 100th term of the sequence.

[3 marks]

$$a = 17 - 4(4)$$

١

3 A sequence of patterns is made using horizontal sticks and vertical sticks.

Pattern 1	Pattern 2	Pattern 3

The table shows the number of horizontal sticks and vertical sticks in each pattern.

Pattern	Number of horizontal sticks	Number of vertical sticks	
1	2	2	
2	4	3	
3	6	4	

What fraction of the total number of sticks in Pattern n are horizontal? Give your answer in terms of n.

[3 marks]

non contact - xxxx - zxx
Vertical = n+1
total : 2n t n+1
= 3n+1

The sequence is continued by multiplying the previous two terms.

4 (a) Circle the 5th term of the sequence.

[1 mark]

$$x^3v^3$$

$$x^{5}v^{5}$$

$$x^3y^4$$

$$(x^2y^3)$$

4 **(b)** The 8th term of the sequence is x^8y^{13}

x8 is always positive

The value of this term is negative.

What does this mean about the values of x and y?

Tick one box for each row.

[2 marks]

	Must be positive	Must be negative	Could be either	
x			V	U
у		V (1)		

A is an arithmetic progression. 5

Here are the first four terms.

13

16

19

22

G is a **geometric** progression.

Here are the first four terms.

2

4

8

16

nth term of A = 8th term of G

Work out the value of n.

[4 marks]

$$256 = 13 + (n-1)3$$

6 Four consecutive triangular numbers are 6 10 15

Write down the next triangular number.

[1 mark]

Answer

7 The 47th triangular number is 1128

The 48th triangular number is 1176

Work out the 49th triangular number.

[1 mark]

[4 marks]

8 The *n*th terms of two linear sequences, A and B, are added to give the *n*th term of a new sequence.

The new sequence starts

The nth term of sequence A is n+1

Work out the nth term of sequence B.

9 (a) Here is the rule for a sequence.

After the first two terms, each term is the sum of the previous two terms

The 1st term is 33

The 2nd term is x

The 4th term is 73

Work out the value of x.

[3 marks]

$$73 = 2x + 33$$

$$x = \frac{40}{2} = 20$$

$$x = 20$$

9 (b) An expression for the nth term of a different sequence is $n - n^2$ Ruth says,

"All the terms will be negative because n^2 is always greater than n."

Is she correct?

Tick a box.

Give a reason for your answer.

[1 mark]

The first term is zero.

Here are the first three Patterns in a sequence made up of small squares.

10 (a) On the grid, draw Pattern 4

[1 mark]

10 (b) The expression for the number of small squares in Pattern n is $n^2 + 4$

Work out the least value of $\,n\,$ for which the number of small squares is greater than 500

[1 mark]

$$n^2 + 4 > 500$$
 $n^2 > 496$

$$n = 23$$